Эндометаллофуллерены
Эндометаллофуллерены
Страница 14

Состояние атомных частиц, заключенных в фуллереновую оболочку, уникально и не может быть воспроизведено каким-либо другим способом. Так, атомы металла передают, частично или полностью, свои валентные электроны на внешнюю часть фуллереновой оболочки, практически теряя свою химическую индивидуальность. Это определяет смещенное относительно центра молекулы положение атома внутри углеродного каркаса и придает эндоэдральной молекуле постоянный дипольный момент. Исследование свойств таких частиц существенно расширяет наши представление о поведении квантовых объектов в необычных условиях.

Возможность непосредственного практического применения эндоэдральных структур в технологии и технике физического эксперимента в настоящее время довольно ограничено, что связано в первую очередь с чрезвычайно высокой стоимостью их производства.

Таким образом, эндоэдральные структуры представляют собой новый класс объектов нанометровых размеров, которые обладают уникальными физико-химическими свойствами и чрезвычайно перспективны для практического использования. Несомненно. в ближайшем будущем можно ожидать открытия новых интересных особенностей в поведении этих объектов, а также реализации потенциальных возможностей их практического применения.

Список литературы

1. Соколов В.И., Станкевич И.В., Успехи химии 62(5) (1993) 455-472.

2. Kroto H.W., Heath J.R., O`Brien S.C, Curl R.F., Smalley R.E., Nature 318 (1985) 162-163.

3. Heath J.R., O`Brien S.C., Zhang Q., Lui Y., Curl R.F., Kroto H.W., Smalley R.E., J. Am. Chem. Soc. 107 (1985) 7779-7782.

4. Bethune D.S., Johnson R.D., Salem J.R., de Veles M.S., Yannoni C.S., Nature 336 (1993) 123-128.

5. Xiao J.,. Savina M.R., Marin G.B., Francis A.H., Meyerhoff M.E., J. Am. Chem. Soc. 116 (1994) 9341-9342.

6. Nagase S., Kobayashi K., Acasaka T., Bull. Chem. Soc. Jpn. 69 (1996) 2131-2142.

7. Tucuta M., Umeda B., Nishibori E., Sucuta M., Saito Y., Ohno M., Shinohara H.,Nature 377 (1995) 46-49.

8. Sueki K., Kikuchi K., Akiyama K., Sawa T., Katada M., Ambe S., Ambe F., Nakahara H., Chem Phys. Lett. 300 (1999) 140-144.

9. Xu Z., Nakane T., Shinohara H., J. Am. Chem. Soc.118 (1996) 11309-11310.

10. Shinohara H., Kagaku 47(4) (1992) 248-252.

11. Schinazi R.F., Chiang L.Y., Wilson L.J., Cagle D.W., Hill C.L., Fullerenes, edited by Kadish K.M. and Ruoff R.S. (The Electrochemical Society, Pennington, N14, 1997) 357-360.

12. Елецкий А.В., Успехи физических наук 170(2) (2000) 113-142.

Страницы: 10 11 12 13 14 15

АСТРОИДА (от греч . astron - звезда и eidos - вид), плоская кривая, описываемая точкой окружности, которая касается изнутри неподвижной окружности вчетверо большего радиуса и катится по ней без скольжения. Принадлежит к гипоциклоидам. Астроида - алгебраическая кривая 6-го порядка.

ЧЕЛОВЕКО-ДЕНЬ , единица учета рабочего времени. В человеко-днях учитываются: отработанное время (явка рабочего на работу независимо от фактически отработанного времени), целодневные простои, неявка на работу по разным причинам (отпуск и др.), праздничные и выходные дни.

ПАНИКС (Понике) , в прусской мифологии священный огонь, зажигаемый в ходе особого ритуала, символ домашнего очага.