Развитие химии высокомолекулярных соединений Развитие химии высокомолекулярных соединенийСтраница 4
Этот и другие факты побудили В. В. Коршака искать иные причины, определяющие способность соединения к полимеризации. Оказалось, что эти причины объясняются пространственными препятствиями. Большие заместители экранируют реакционные центры молекул мономера, причем степень влияния заместителей на полимеризацию прямо пропорциональна их объему и числу.
Гипотеза В. В. Коршака дает возможность объяснить различное отношение одних и тех же мономеров к ионной и радикальной полимеризации. Так, например, замещенные этилены, у которых экранирующий эффект заместителей недостаточно велик, сравнительно активны при ионной полимеризации и не полимеризуются по радикальному механизму. Объясняется это тем, что силы взаимодействия между ионами в ионном процессе уменьшаются с увеличением расстояния в значительно меньшей степени, чем силы взаимодействия между радикалом и молекулой олефина в радикальной реакции. Поэтому при ионной полимеризации пространственные затруднения, вызываемые заместителями, сказываются меньше, чем при радикальной.
Зависимость способности органических веществ к полимеризации от химического строения весьма плодотворно исследовалась также X. С. Багдасарьяном, А. Д. Абкиным и другими сотрудниками Физико-химического института
им. Л. Я. Карпова.
В конце 40-х — начале 50-х годов X. С. Багдасарьян в ряде своих работ показал, что реакционная способность мономеров прямо пропорциональна эффекту сопряжения л, -л- и -о-связей в их молекулах и обратно пропорциональна эффекту сопряжения "холостого" электрона со всеми другими электронами в радикале. Таким образом, активность молекул мономеров и активность радикалов, полученных на основе этих мономеров, находятся не в симбатных, а в антибатных отношениях: чем активнее молекула мономера, тем менее активным оказывается получаемый на ее основе радикал.
В начале 60-х годов, благодаря исследованиям
В. А. Каргина и В. А. Кабанова в области полимеризации, возникло новое направление, основанное на возможности изменения реакционной способности мономеров путем их кристаллизации или связывания в комплексы с другими веществами.
Классические приемы увеличения равновесных концентраций целевых продуктов состояли, как известно, в изменении температуры и давления. В. А. Каргин и В. А. Кабанов предложили принципиально иной подход к решению вопроса об увеличении выхода полимера и степени полимеризации. Сущность этого подхода связана со своеобразным каталитическим влиянием комплексообразователей, в частности реакционной среды.
Схема превращения мономера М в полимер
никак не отражает взаимодействия молекул М и Мп со средой. Если это взаимодействие сильное, то введение в термодинамические и кинетические уравнения коэффициентов активностей, как это обычно делают в случае сравнительно слабых взаимодействий, утрачивает смысл. Тогда схему (I) целесообразно заменить другой:
где X — частица или совокупность частиц комплексообразователя, взаимодействующих с молекулой мономера и со звеньями макромолекулы. Взаимодействие между молекулами М, звеньями —М— и частицами Х способно кардинально влиять на механизм реакции.
В отличие от чистого мономера его комплексу в ряде случаев "разрешено" полимеризоваться с образованием соответствующего комплекса полимера. Развиваемое В. А. Кар-гиным и В. А. Кабановым направление в области полимеризации открывает большие перспективы для моделирования синтеза полимерных цепей в живых клетках. Представим себе, что частицы Х в схеме (II) химически связаны в длинные цепи, т. е. образуют макромолекулы. Тогда молекулы мономера выстраиваются вдоль заранее синтезированных полимерных "матриц":
ЗАДАР (Zadar) , город в Хорватии, порт на Адриатическом м. 76 тыс. жителей (1991). Международный аэропорт. Машиностроение, пищевкусовая, текстильная промышленность. Курорт. Археологический музей, Художественная галерея. Остатки римского форума и триумфальных арок. Церковь-ротонда св. Доната (нач. 9 в.). Романские базилики (св. Стошия, 12-13 вв.; св. Кршевана, 12 в.), крепостные ворота "Порта Терраферма" в стиле ренессанса (16 в.).
ЭЛЕКТРОМОТЫГА , сельскохозяйственное орудие для обработки междурядий в теплицах, парниках, на приусадебных участках; используется также для сплошной обработки почвы на глубину до 10 см. Основной рабочий орган - ротор со сменными ножами, приводимый в действие от электродвигателя.
ЯКОВЛЕВ Алексей Иванович (1878-1951) , российский историк, член-корреспондент АН СССР (1929). Труды и публикации документов по социально-экономической, военно-политической истории России ("Холопство и холопы в Московском государстве 17 в." и др.). Государственная премия СССР (1943).